Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system
نویسندگان
چکیده
BACKGROUND The soil bacterium Pseudomonas putida KT2440 is a "generally recognized as safe"-certified strain with robust property and versatile metabolism. Thus, it is an ideal candidate for synthetic biology, biodegradation, and other biotechnology applications. The known genome editing approaches of Pseudomonas are suboptimal; thus, it is necessary to develop a high efficiency genome editing tool. RESULTS In this study, we established a fast and convenient CRISPR-Cas9 method in P. putida KT2440. Gene deletion, gene insertion and gene replacement could be achieved within 5 days, and the mutation efficiency reached > 70%. Single nucleotide replacement could be realized, overcoming the limitations of protospacer adjacent motif sequences. We also applied nuclease-deficient Cas9 binding at three locations upstream of enhanced green fluorescent protein (eGFP) for transcriptional inhibition, and the expression intensity of eGFP reduced to 28.5, 29.4, and 72.1% of the control level, respectively. Furthermore, based on this CRISPR-Cas9 system, we also constructed a CRISPR-Cpf1 system, which we validated for genome editing in P. putida KT2440. CONCLUSIONS In this research, we established CRISPR based genome editing and regulation control systems in P. putida KT2440. These fast and efficient approaches will greatly facilitate the application of P. putida KT2440.
منابع مشابه
Cas9-based tools for targeted genome editing and transcriptional control.
Development of tools for targeted genome editing and regulation of gene expression has significantly expanded our ability to elucidate the mechanisms of interesting biological phenomena and to engineer desirable biological systems. Recent rapid progress in the study of a clustered, regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein system in bacteria has fac...
متن کاملExtending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
The discovery and exploitation of the prokaryotic adaptive immunity system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins have revolutionized genetic engineering. CRISPR-Cas tools have enabled extensive genome editing as well as efficient modulation of the transcriptional program in a multitude of organisms. Progress in the deve...
متن کاملTranscriptome analysis of Pseudomonas putida KT2440 harboring the completely sequenced IncP-7 plasmid pCAR1.
The IncP-7 plasmid pCAR1 of Pseudomonas resinovorans CA10 confers the ability to degrade carbazole upon transfer to the recipient strain P. putida KT2440. We designed a customized whole-genome oligonucleotide microarray to study the coordinated expression of pCAR1 and the chromosome in the transconjugant strain KT2440(pCAR1). First, the transcriptome of KT2440(pCAR1) during growth with carbazol...
متن کاملThe new genomic editing system (CRISPR)
Over the past decades, progression in genetic element manipulation, and consequently, the treatment of diseases has been remarkable. It is worth noting that these genetic manipulations perform at different levels, including DNA and RNA. The earlier genomic editing techniques, including MN, ZFN , TALEN , performing their functions by creating double-stranded breaks (DSBs), and after breakage, th...
متن کاملMqsR/MqsA Toxin/Antitoxin System Regulates Persistence and Biofilm Formation in Pseudomonas putida KT2440
Bacterial toxin/antitoxin (TA) systems have received increasing attention due to their prevalence, diverse structures, and important physiological functions. In this study, we identified and characterized a type II TA system in a soil bacterium Pseudomonas putida KT2440. This TA system belongs to the MqsR/MqsA family. We found that PP_4205 (MqsR) greatly inhibits cell growth in P. putida KT2440...
متن کامل